درباره رنگ آمیزی قوی یالی گراف ها

thesis
abstract

یک k-رنگ آمیزی قوی یالی گراف g=(v,e) تابع است به طوری که به هر دو یالی که منتهی به یک رأس یا مجاور با یک یال هستند، مقدارها (رنگ های) متفاوتی اختصاص داده شود. اندیس رنگی قوی گراف g که آن را با ?s(g) نشان می دهیم، کوچکترین عدد k است که یک k-رنگ آمیزی قوی یالی برای g موجود باشد. در این پایان نامه ?s(g) را برای هالین گراف مکعبی کامل و گراف های دوبخشی sm (k,l) و sm(k,l,?) مورد مطالعه قرار می دهیم. برولدی و کویین حدسی ارایه دادند مبنی بر این که برای هر گراف دوبخشی g، 2?1? کران بالایی برای ?s(g) است که در آن 1? و 2? ماکزیمم درجات در میان رئوس دو بخش گراف هستند. نکپرسیت درستی این حدس را در حالت 2=1? نشان داد. در اینجا این حدس و اثبات نکپرسیت را بررسی می کنیم. سپس کران های بالایی برای اندیس رنگی قوی سه نوع حاصل ضرب گراف ها برحسب اندیس رنگی قوی هرکدام از گراف ها و به طور خاص اندیس رنگی قوی تورهای d بعدی، برخی تورهای چنبره ای و ابر مکعب های تعمیم یافته را به دست می آوریم. رنگ آمیزی دیگری که در اینجا آن را مد نظر قرار می دهیم، رنگ آمیزی قوی یالی مجاورتی گراف است. یک رنگ آمیزی قوی یالی مجاورتی گراف g یک رنگ آمیزی یالی سره از گراف g است به طوری که مجموعه رنگ یال های منتهی به رئوس مجاور گراف مساوی نباشند. کوچکترین عدد را که با آن تعداد رنگ، یک رنگ آمیزی قوی یالی مجاورتی برای گراف g موجود باشد، عدد رنگی قوی یالی مجاورتی گراف نامیده می شود. ژانگ و همکارانش مقدار را برای برخی گراف های خاص به دست آوردند و نیز حدس زدند . در این جا به مطالعه این حدس پرداخته و ثابت می کنیم این حدس برای همه ی گراف های دو بخشی و گراف هایی که در آن ها ، برقرار می باشد.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

رنگ آمیزی یالی ستاره ای گراف ها

در رنگ آمیزی یالی ستار ه ای، یال های گراف به گونه ای رنگ می شوند که هیچ دو یال مجاوری هم رنگ نباشند و همچنین دور یا مسیر به طول چهار 2-رنگی ایجاد نشود. کمترین تعداد رنگ مورد نیاز برای رنگ آمیزی یالی ستاره ای نامیده می شود. در این پایان نامه ضمن مطالعه نتایج موجود پیرامون رنگ آمیزی یالی ستاره ای و بررسی رنگ آمیزی های مرتبط بااین رنگ آمیزی، یک کران بالا برای عدد رنگی یالی ستاره ای حاصل ضرب دکارت...

درباره رنگ آمیزی کامل گراف ها

در این پایان نامه به مفهوم عدد رنگی کامل یک گراف g، ?(g) ، می پردازیـم. این مفهوم بـرای اولیـن بار توسط فرانک هراری، هدتنیـمی و پرنس در سال 1967مطرح شد. کوچکتـرین عدد صحیح مثبت k که گراف g گرافی -kرنگ پذیر باشد را عدد رنگی گراف g گوییم و آن را با نماد ?(g) نشان می دهیم. بزرگترین عدد صحیح مثبت k که گرافg دارای یک -k رنگ آمیزی کامل باشد را عدد رنگی کامل گراف g می گوییم وآن را با نماد?(g) نشان می ...

15 صفحه اول

رنگ آمیزی پویای گراف ها

در این پایانامه سعی می کنیم به ارتباط بین عدد رنگی و عدد رنگی پویای گراف ها در حالت خاص بپردازیم, علاوه بر آن عدد رنگی پویای انتخابی(لیستی) را معرفی کرده و بعضی از نتایج آن را بیان می کنیم.

رنگ آمیزی پویای گراف ها

یک k رنگ آمیزی گراف g را رنگ آمیزی پویا می نامند, اگر در همسایه های هر رأس آن با حداقل درجه دو, حداقل 2 رنگ متفاوت ظاهر شوند. کوچکترین عدد صحیح k را به طوری کهg دارای یک k-رنگ آمیزی پویا باشد, عدد رنگی پویای g می نامند. در این پایان نامه به بررسی مفهوم رنگ آمیزی پویا, عدد رنگی پویای برخی گراف های خاص و کران بالای عدد رنگی پویا که در مقاله lai, h. j.,b. montgomery, h. poon, (2003), upper bounds ...

15 صفحه اول

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت دبیر شهید رجایی - دانشکده علوم پایه

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023